Page Header Logo

Cover Page

Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • About the Journal
  • Aims and Scope
  • Submission
  • Author Guidelines
  • Review Process
  • Privacy Statement
  • Article Processing charges
  • Publication Ethics
  • Open Access
  • Copyright and License
  • Archive Policy
  • Plagiarism Policy

Template Cover Page Cover Page
Similarity Checker

Cover Page

Member of

Cover Page

Statistics


Flag Counter

  • Home
  • Current
  • Announcement
  • Archive
  • Editorial Team
  • Reviewers
  • Contact us
  • Search
Home > Articles

Prediksi Kunjungan Wisata Kota Payakumbuh Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation

  • Nurul Aulya
    Independent Research


DOI: https://doi.org/10.37034/infeb.v4i4.157
Keywords: Data Mining, FP-Growth, Association Rules, Rapid Miner, Stock Items

Abstract

Tourism is a whole related elements which consist of tourists, tourist destinations, travel, industry and so on which are tourism activities and abundant natural wealth. The tourism sector is a very important service-based sector. Tourism is the fastest growing, vibrant and strong economic sector development, it also contributes to Gross Domestic Product (GDP), job creation, social and economic development. Artificial Neural Networks are computer programs that can imitate thought processes and knowledge to solve a specific problem. One of which is applied by the Artificial Neural Network to predict tourist visits. By using the Backpropagation method, it will be known the prediction of the number of tourist visits. The Backpropagation method is very useful for Artificial Neural Networks predicting the number of tourist visits the following year. The data processed in this study were 12 data sourced from the tourism section of the Payakumbuh City Youth and Sports Tourism Office. Furthermore, the data is processed using Matlab software. The stages of backpropagation are initialization, activation, training and iteration. The calculation of the network pattern used and the accuracy level of the expected error is continued. The result of testing this method is that it can predict tourist visits. So the level of accuracy is 95%. The prediction process has been carried out to predict tourist visits to the city of Payakumbuh. With the level of accuracy obtained is met, it can be used to help the Payakumbuh City Tourism Office increase the number of tourist visits in the future and further improve tourism management.

Downloads

Download data is not yet available.

References

Pandy, I. P. G. A. (2021). Desain Interior pada Akomodasi Nomadic Tourism dalam Perspektif Postmodern. Ars: Jurnal Seni Rupa dan Desain, 24(2), 51-58. https://doi.org/10.24821/ars.v24i2.3707
Wati, R. F. (2020). Daya Tarik Batu Caves Sebagai Salah Satu Obyek Wisata Unggulan Di Malaysia. https://doi.org/10.31219/osf.io/kcm8t
Salimu, S. A., & Yunus, Y. (2020). Prediksi Tingkat Kedatangan Wisatawan Asing Menggunakan Metode Backpropagation (Studi Kasus: Kepulauan Mentawai). Jurnal Informatika Ekonomi Bisnis, 98-103. https://doi.org/10.37034/infeb.v2i4.50
Salim, K. A., Nafi'iyah, N., & Mujilahwati, S. (2021). Backpropagation untuk Memprediksi Jumlah Wisatawan Mancanegara ke Indonesia. Smatika Jurnal, 11(02), 146-152. https://doi.org/10.32664/smatika.v11i02.622
Ian, Y. J., & Frinaldi, A. (2022). Pengembangan Batang Agam Sebagai Kawasan Olahraga Dalam Peningkatan Kunjungan Masyarakat (Studi Kawasan Batang Agam Kota Payakumbuh). Journal Of Policy, Governance, Development and Empowerment, 2(1), 103-120. https://doi.org/10.24036/pgde.v2i2.113
Sovia, R., Yanto, M., & Melati, P. (2020). Prediksi Jumlah Kunjungan Wisata Mancanegara dengan Algoritma Backpropagation. Jurnal Media Informatika Budidarma, 4(2), 355-362. http://dx.doi.org/10.30865/mib.v4i2.2048
Aulia, R. (2018). Penerapan Metode Backpropagation Untuk Memprediksi Jumlah Kunjungan Wisatawan Berdasarkan Tingkat Hunian Hotel. JURTEKSI (Jurnal Teknologi dan Sistem Informasi),4(2),115-122. https://doi.org/10.33330/jurteksi.v4i2.45
Ayunda, R., & Rusdianto, R. (2021). Perlindungan Data Nasabah Terkait Pemanfaatan Artificial Intelligence dalam Aktifitas Perbankan di Indonesia. Jurnal Komunikasi Hukum (JKH), 7(2), 663-677. https://doi.org/10.23887/jkh.v7i2.37995
Achmalia, A. F., Walid, W., & Sugiman, S. (2020). Peramalan penjualan semen menggunakan backpropagation neural network dan recurrent neural network. UNNES Journal of Mathematics, 9(1), 6-21. https://doi.org/10.15294/ujm.v8i1.29323
Rohman, F., Al Amin, M. S., & Emidiana, E. (2022). Prediksi Beban Listrik Dengan Menggunakan Jaringan Syaraf Tiruan Metode Backpropagation. Jurnal Surya Energy, 5(2), 55-60. https://doi.org/10.32502/jse.v5i2.3092
Furqan, M., Nasution, Y. R., & Hasibuan, R. A. (2021). Prediksi Pemilihan Jurusan Siswa Kelas 1 SMK Menggunakan Jaringan Syaraf Tiruan dengan Metode Backpropagation. JURIKOM (Jurnal Riset Komputer), 8(6), 294-299. http://dx.doi.org/10.30865/jurikom.v8i6.3695
Lestari, K. T. N., Albar, M. A., & Afwani, R. (2019). Penerapan Metode Backpropagation Dalam Memprediksi Jumlah Kunjungan Wisatawan Ke Provinsi Nusa Tenggara Barat (NTB). Journal of Computer Science and Informatics Engineering(J-Cosine), 3(1), 39-48. https://doi.org/10.29303/jcosine.v3i1.236
Wong, K., Wibawa, A. P., Pakpahan, H. S., Prafanto, A., & Setyadi, H. J. (2019). Prediksi tingkat inflasi dengan menggunakan metode backpropagation neural network. Sains, Aplikasi, Komputasi dan Teknologi Informasi, 1(2),813. http://dx.doi.org/10.30872/jsakti.v1i2.2600
Manurung, S. F., Andriansya, A., Permana, J., & Pangestu, R. (2022). Pemanfaatan Algoritma JST untuk Menentukan Model Prediksi Umur Harapan Hidup Saat Lahir. Hello World Jurnal IlmuKomputer,1(1),19-35. https://doi.org/10.56211/helloworld.v1i1.9
Parwita, W. G. S., & Sukraeni, N. P. P. (2022). Peramalan Jumlah Kunjungan Wisatawan Mancanegara Ke Bali dengan Jaringan Saraf Tiruan Backpropagation. J-SAKTI (Jurnal Sains Komputer dan Informatika), 6(1), 507-517. http://dx.doi.org/10.30645/j-sakti.v6i1.464
DOWNLOAD
Published
2022-12-31
Issue
Vol. 4, No. 4 (December 2022)
Section
Articles
How to Cite
Aulya, N. (2022). Prediksi Kunjungan Wisata Kota Payakumbuh Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation. Jurnal Informatika Ekonomi Bisnis, 4(4), 130-135. https://doi.org/10.37034/infeb.v4i4.157
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexing and Abstractions:

Published:

       Creative Commons License
       This work is licensed under a Creative Commons Attribution 4.0 International Public License (CC BY 4.0).