Page Header Logo

Cover Page

Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • About the Journal
  • Aims and Scope
  • Submission
  • Author Guidelines
  • Review Process
  • Privacy Statement
  • Article Processing charges
  • Publication Ethics
  • Open Access
  • Copyright and License
  • Archive Policy
  • Plagiarism Policy

Template Cover Page Cover Page
Similarity Checker

Cover Page

Member of

Cover Page

Statistics


Flag Counter

  • Home
  • Current
  • Announcement
  • Archive
  • Editorial Team
  • Reviewers
  • Contact us
  • Search
Home > Articles

Data Mining Menggunakan Algoritma K-Means Clustering dalam Analisis Tingkat Potongan Harga Terhadap Harga Jual Sepeda Motor Honda

  • Rafki Mauliadi
    Independent Researcher


DOI: https://doi.org/10.37034/infeb.v4i4.156
Keywords: Data Mining, K-Means Clustering, Sepeda Motor Honda, Potongan Harga, Algoritma

Abstract

Knowledge Discovery in Database (KDD) has a structured analysis process to obtain the latest information. Data mining plays a role in extracting hidden information with one method, namely clustering. The purpose of this study was to determine the appropriate level of discount for each type of Honda motorcycle. The data processed in this study were sourced from the Marketing Main Dealer for Honda Motorcycles, West Sumatra. Furthermore, this data is processed by the Data Mining technique using the K-Means Clustering Algorithm. The processing stage is to determine the number of clusters and centroids, then calculate the distance between the centroid point and each object in the data. Predefined objects are grouped to determine cluster members based on distance. The calculation is continued until the resulting centroid value remains and the cluster members do not move to another cluster. The results of testing this algorithm are 3 clusters with 42 test data, in cluster 1 there are 34 types of vehicles that get discounted prices, then cluster 2 of 7 types of vehicles can get discounts and cluster 3 of 1 type of vehicles can not get discounts. The analysis of the test results has been able to determine the level of discount on the selling price of Honda motorcycles. By grouping customer interest data, it can be recommended to provide discounted sales prices in order to help marketing management increase sales of Honda motorcycles.

Downloads

Download data is not yet available.

References

Fakhri, D. A., Defit, S., & Sumijan. (2021). Optimalisasi Pelayanan Perpustakaan terhadap Minat Baca Menggunakan Metode K-Means Clustering. Jurnal Informasi Dan Teknologi, 3(3), 160-166. https://dx.doi.org/10.37034/jidt.v3i3.137

Mohammadi, L., Einalou, Z., Hosseinzadeh, H., & Dadgostar, M. (2021). Cursor movement detection in brain-computer-interface systems using the K-means clustering method and LSVM. Journal of Big Data, 8(1). https://dx.doi.org/10.1186/s40537-021-00456-4

Sinaga, K. P., & Yang, M.-S. (2020). Unsupervised K-Means Clustering Algorithm. IEEE Access, 8, 80716–80727. https://dx.doi.org/10.1109/access.2020.2988796

Singh, S., & Singh, P. (2020). Speaker specific feature based clustering and its applications in language independent forensic speaker recognition. International Journal of Electrical and Computer Engineering, 10(4), 3508. https://dx.doi.org/10.11591/ijece.v10i4.pp3508-3518

Elda, Y., Defit, S., Yunus, Y., & Syaljumairi, R. (2021). Klasterisasi Penempatan Siswa yang Optimal untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-Means. Jurnal Informasi Dan Teknologi, 3(3), 103-108. https://dx.doi.org/10.37034/jidt.v3i3.130

Handoko, S., Fauziah, F., & Handayani, E. T. E. (2020). Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering. Jurnal Ilmiah Teknologi dan Rekayasa, 25(1), 76-88. https://dx.doi.org/10.35760/tr.2020.v25i1.2677

Virgo, I. ., Defit, S. ., & Yuhandri, Y. (2021). Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering. Jurnal Sistim Informasi Dan Teknologi, 2(1), 23–28. https://dx.doi.org/10.37034/jsisfotek.v2i1.17

Virgantari, F., & Faridhan, Y. E. (2020). K-Means Clustering of COVID-19 Cases in Indonesia’s Provinces. ADRI International Journal of Engineering and Natural Science, 5(2), 34–39. https://dx.doi.org/10.29138/aijens.v5i2.15

Nurdiyansyah, F., & Akbar, I. (2021). Implementasi Algoritma K-Means untuk Menentukan Persediaan Barang pada Poultry Shop. Informatik: Jurnal Teknologi dan Manajemen Informatika, 7(2) 86-94. https://dx.doi.org/10.52958/iftk.v17i3.3654

Kurniawan, R., Defit, S., & Sumijan. (2021). Prediksi Tingkat Kerugian Peternak Akibat Penyakit pada Sapi Menggunakan Algoritma K-Means Clustering. Jurnal Informasi Dan Teknologi, 3(1), 29-35. https://dx.doi.org/10.37034/jidt.v3i1.87

Sharon, Defit, S., & Nurcahyo, G. W. (2021). Tingkat Efisiensi Penggunaan Resep Dokter Spesialis Menggunakan Metode K-Means Clustering. Jurnal Informasi Dan Teknologi, 3(3), 121-127. https://dx.doi.org/10.37034/jidt.v3i3.118

DOWNLOAD
Published
2022-12-31
Issue
Vol. 4, No. 4 (December 2022)
Section
Articles
How to Cite
Mauliadi, R. (2022). Data Mining Menggunakan Algoritma K-Means Clustering dalam Analisis Tingkat Potongan Harga Terhadap Harga Jual Sepeda Motor Honda. Jurnal Informatika Ekonomi Bisnis, 4(4), 124-129. https://doi.org/10.37034/infeb.v4i4.156
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexing and Abstractions:

Published:

       Creative Commons License
       This work is licensed under a Creative Commons Attribution 4.0 International Public License (CC BY 4.0).