Page Header Logo

Cover Page

Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • About the Journal
  • Aims and Scope
  • Submission
  • Author Guidelines
  • Review Process
  • Privacy Statement
  • Article Processing charges
  • Publication Ethics
  • Open Access
  • Copyright and License
  • Archive Policy
  • Plagiarism Policy

Template Cover Page Cover Page
Similarity Checker

Cover Page

Member of

Cover Page

Statistics


Flag Counter

  • Home
  • Current
  • Announcement
  • Archive
  • Editorial Team
  • Reviewers
  • Contact us
  • Search
Home > Articles

Strategi Human Capital di Era Disrupsi AI: Systematic Literature Reviews tentang Reskilling, Upskilling, dan Pengelolaan Talent

  • Sumarta Endra
    Universitas Putra Indonesia YPTK Padang

  • Vevia Rosi
    Universitas Putra Indonesia YPTK Padang

  • Zulfeni Widiasari
    Universitas Putra Indonesia YPTK Padang

  • Willa Kurnia Eka Syafrita
    Universitas Putra Indonesia YPTK Padang

  • M. Yogi Eka Pranata
    Universitas Putra Indonesia YPTK Padang

  • Syafwandi
    Universitas Putra Indonesia YPTK Padang


DOI: https://doi.org/10.37034/infeb.v7i4.1351
Keywords: Human Capital Strategy, AI Disruption Era, Reskilling, Upskilling, Talent Management

Abstract

This study aims to examine the development and impact of artificial intelligence adoption across various sectors, with a focus on higher education, creative industries, and business. Using bibliometric analysis, this research analyzes relevant articles published between 2021 and 2024, considering citation counts and contributions to understanding AI in different fields. The most cited article is Developing a model for AI Across the curriculum, which discusses the integration of AI in higher education to enhance AI literacy. Additionally, the study highlights the importance of upskilling and reskilling in multinational corporations, as discussed in Rebooting employees: upskilling for artificial intelligence in multinational corporations, emphasizing the need for skill updates to adapt to technological advancements. The research also identifies that AI adoption by SMEs and other industries has significant potential to improve productivity and business sustainability, although challenges related to human resource readiness and digital infrastructure persist. Overall, the findings provide insights into AI's technological development and its implications for business transformation and learning strategies in the digital era.

Downloads

Download data is not yet available.

References

Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI-Based Transformation Projects. Business Process Management Journal, 26(7), 1893–1924. DOI: https://doi.org/10.1108/BPMJ-10-2019-0411 .

Su, H., Du, X., Chen, Y., Tian, S., Ma, Q., & Zhong, W. (2025). Value Co-Creation Mechanism for AI-Based Enterprises with Systems Thinking: Case Study of Baidu. Systems Research and Behavioral Science, 42(4), 1142–1162. DOI: https://doi.org/10.1002/sres.3065 .

Yablonsky, S. (2021). AI-Driven Platform Enterprise Maturity: From Human Led to Machine Governed. Kybernetes, 50(10), 2753–2789. DOI: https://doi.org/10.1108/K-06-2020-0384 .

Serey, J., Alfaro, M., Fuertes, G., Vargas, M., Ternero, R., Duran, C., … Gutierrez, S. (2023, October 1). Framework for the Strategic Adoption of Industry 4.0: A Focus on Intelligent Systems. Processes. Multidisciplinary Digital Publishing Institute (MDPI). DOI: https://doi.org/10.3390/pr11102973 .

Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the Value of Artificial Intelligence in Human Resource Management Through AI Capability Framework. Human Resource Management Review, 33(1). DOI: https://doi.org/10.1016/j.hrmr.2022.100899 .

Yablonsky, S. A. (2019). Multidimensional Data-Driven Artificial Intelligence Innovation. Technology Innovation Management Review, 9(12), 16–28. DOI: https://doi.org/10.22215/timreview/1288 .

Sadiq, R. B., Safie, N., Abd Rahman, A. H., & Goudarzi, S. (2021). Artificial Intelligence Maturity Model: A Systematic Literature Review. PeerJ Computer Science, 7, 1–27. DOI: https://doi.org/10.7717/peerj-cs.661 .

Ouchtout, W. A., Zaki, S., & Idrissi Gartoumi, K. (2025). Advancing Digital Innovation in the AEC Industry: A Bibliometric Analysis on the BIM, AI and IoT Integration. In IOP Conference Series: Earth and Environmental Science (Vol. 1499). Institute of Physics. DOI: https://doi.org/10.1088/1755-1315/1499/1/012010 .

Ali, M., & Miller, L. (2017). ERP System Implementation in Large Enterprises – A Systematic Literature review. Journal of Enterprise Information Management. Emerald Group Publishing Ltd. DOI: https://doi.org/10.1108/JEIM-07-2014-0071 .

Trunk, A., Birkel, H., & Hartmann, E. (2020). On the Current State of Combining Human and Artificial Intelligence for Strategic Organizational Decision Making. Business Research, 13(3), 875–919. DOI: https://doi.org/10.1007/s40685-020-00133-x .

Liao, Q. V., Gruen, D., & Miller, S. (2020). Questioning the AI: Informing Design Practices for Explainable AI User Experiences. In Conference on Human Factors in Computing Systems - Proceedings. Association for Computing Machinery. DOI: https://doi.org/10.1145/3313831.3376590 .

Barenkamp, M., Rebstadt, J., & Thomas, O. (2020). Applications of AI in Classical Software Engineering. AI Perspectives, 2(1). DOI: https://doi.org/10.1186/s42467-020-00005-4 .

Essed, A., Iyiola, K., & Alzubi, A. (2025). Unpacking Artificial Intelligence’s Role in the Energy Transition: The Mediating and Moderating Roles of Knowledge Production and Financial Development. Energies, 18(17). DOI: https://doi.org/10.3390/en18174512 .

Rampini, L., & Re Cecconi, F. (2024). Is the Construction Sector Ready for Artificial Intelligence? In Advances in Science, Technology and Innovation (pp. 165–172). Springer Nature. DOI: https://doi.org/10.1007/978-3-031-52303-8_12 .

Purohit, R., & Banerjee, T. (2025). Artificial Intelligence-Based Organizational Decision-Making in Recruitment practice. Human Systems Management, 44(1), 173–186. DOI: https://doi.org/10.3233/HSM-240044 .

Vereschak, O., Bailly, G., & Caramiaux, B. (2021). How to Evaluate Trust in AI-Assisted Decision Making? A Survey of Empirical Methodologies. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2). DOI: https://doi.org/10.1145/3476068 .

Mardiani, E., Judijanto, L., & Rukmana, A. Y. (2023). Improving Trust and Accountability in AI Systems through Technological Era Advancement for Decision Support in Indonesian Manufacturing Companies. West Science Interdisciplinary Studies, 1(10), 1019–1027. DOI: https://doi.org/10.58812/wsis.v1i10.301

Fedosovsky, M. E., Uvarov, M. M., Aleksanin, S. A., Pyrkin, A. A., Colombo, A. W., & Prattichizzo, D. (2022). Sustainable Hyperautomation in High-Tech Manufacturing Industries: A Case of Linear Electromechanical Actuators. IEEE Access, 10, 98204–98219. DOI: https://doi.org/10.1109/ACCESS.2022.3205623

Chou, W. H., & Chou, C. H. (2025). From Human Teller to Virtual Assistant: A Study on Chatbot Adoption in Leading Banks. Issues in Information Systems, 26(1), 446–457. DOI: 1350-Article Text-3126-1-2-20251223.doc

Bécue, A., Gama, J., & Brito, P. Q. (2024). AI’s Effect on Innovation Capacity in the Context of Industry 5.0: a Scoping Review. Artificial Intelligence Review, 57(8). DOI: https://doi.org/10.1007/s10462-024-10864-6

Assanova, A., Issaeva, A., Dzhubalieva, Z., Arzikulova, R., & Uchkampirova, A. (2025). Financial-Digital Investments in Human Capital as a Factor of Sustainable Economic Growth: Assessment, Dynamics and Impact of Artificial Intelligence (a Kazakhstan Case Study). Economic Annals-XXI, 213(1–2), 18–29. DOI: https://doi.org/10.21003/ea.V213-02

Agrawal, R., Wankhede, V. A., Kumar, A., Luthra, S., Majumdar, A., & Kazancoglu, Y. (2022). An Exploratory State-of-the-Art Review of Artificial Intelligence Applications in Circular Economy using Structural Topic Modeling. Operations Management Research, 15(3–4), 609–626. DOI: https://doi.org/10.1007/s12063-021-00212-0

Słoniec, J., Kulisz, M., Małecka-Dobrogowska, M., Konurbayeva, Z., & Sobaszek, Ł. (2025). Awareness of the Impact of IT/AI on Energy Consumption in Enterprises: A Machine Learning-Based Modelling Towards a Sustainable Digital Transformation. Energies, 18(21). DOI: https://doi.org/10.3390/en18215573

Southworth, J., Migliaccio, K., Glover, J., Glover, J. N., Reed, D., McCarty, C., … Thomas, A. (2023). Developing a Model for AI Across the Curriculum: Transforming the Higher Education Landscape Via Innovation in AI Literacy. Computers and Education: Artificial Intelligence, 4. DOI: https://doi.org/10.1016/j.caeai.2023.100127

Jaiswal, A., Arun, C. J., & Varma, A. (2022). Rebooting Employees: Upskilling for Artificial Intelligence in Multinational Corporations. International Journal of Human Resource Management, 33(6), 1179–1208. DOI: https://doi.org/10.1080/09585192.2021.1891114

Stephany, F., & Teutloff, O. (2024). What is the Price of a Skill? The Value of Complementarity. Research Policy, 53(1). DOI: https://doi.org/10.1016/j.respol.2023.104898 .

Lee, H. K. (2022). Rethinking Creativity: Creative Industries, AI and Everyday Creativity. Media, Culture and Society, 44(3), 601–612. DOI: https://doi.org/10.1177/01634437221077009 .

Khan, A. N., Mehmood, K., & Kwan, H. K. (2024). Green Knowledge Management: A Key Driver of Green Technology Innovation and Sustainable Performance in the Construction Organizations. Journal of Innovation and Knowledge, 9(1). DOI: https://doi.org/10.1016/j.jik.2023.100455 .

Badghish, S., & Soomro, Y. A. (2024). Artificial Intelligence Adoption by SMEs to Achieve Sustainable Business Performance: Application of Technology–Organization–Environment Framework. Sustainability (Switzerland), 16(5). DOI: https://doi.org/10.3390/su16051864 .

Kim, H. K., & Lee, C. W. (2021). Relationships Among Healthcare Digitalization, Social Capital, and Supply Chain Performance in the Healthcare Manufacturing Industry. International Journal of Environmental Research and Public Health, 18(4), 1–13. DOI: https://doi.org/10.3390/ijerph18041417

Khan, M. S., Umer, H., & Faruqe, F. (2024). Artificial Intelligence for Low Income Countries. Humanities and Social Sciences Communications, 11(1). DOI: https://doi.org/10.1057/s41599-024-03947-w

Arcelay, I., Goti, A., Oyarbide-Zubillaga, A., Akyazi, T., Alberdi, E., & Garcia-Bringas, P. (2021). Definition of the Future Skills Needs of Job Profiles in the Renewable Energy Sector. Energies, 14(9). DOI: https://doi.org/10.3390/en14092609

Amankwah-Amoah, J., & Appiah, G. (2025). Unmasking the Silent Threat: AI-Induced Human Capital Obsolescence and Business Failure. Journal of Managerial Psychology. DOI: https://doi.org/10.1108/JMP-05-2024-0385

Bounfour, A., Nonnis, A., & Yang, S. (2025). Assessing the Impact of AI Skills on Firm Productivity: a Cross-Country Analysis. Digital Transformation and Society, 4(3), 299–311. DOI: https://doi.org/10.1108/DTS-06-2024-0090

Rademakers, E., & Zierahn-Weilage, U. (2024). New Technologies: End of Work or Structural Change? Economists’ Voice, 21(2), 335–344. DOI: https://doi.org/10.1515/ev-2024-0046 .

Sira, M. (2025). A Gap Analysis Framework for Enterprise AI Implementation. Production Engineering Archives, 31(3), 291–310. DOI: https://doi.org/10.30657/pea.2025.31.28 .

Call, M. L., Jiang, K., & Idso, C. (2025). Star Advantage: Employee Value Creation and Capture in the Age of Artificial Intelligence. Human Resource Management. DOI: https://doi.org/10.1002/hrm.70023 .

Xu, G., & Xue, M. (2025). The Relationship Between Proactive Personality and Migrant Workers’ Perception of Technical Unemployment Risk Under the Impact of Artificial Intelligence in China. Frontiers in Psychology, 16. DOI: https://doi.org/10.3389/fpsyg.2025.1474639 .

Shannaq, B., Sriram, V. P., Alrawahi, S., Muniyanayaka, D. K., & Ali, O. (2025). An AI and NLP Framework for Extracting Leadership Competencies and Mapping Personalized Training Paths: A Strategic Approach for Human Resource Development. Bangladesh Journal of Multidisciplinary Scientific Research, 10(5), 1–11. DOI: https://doi.org/10.46281/xpyf6042 .

Wang, K., Cui, W., & Yuan, X. (2025). Artificial Intelligence in Higher Education: The Impact of Need Satisfaction on Artificial Intelligence Literacy Mediated by Self-Regulated Learning Strategies. Behavioral Sciences, 15(2). DOI: https://doi.org/10.3390/bs15020165 .

Yu, G. (2024). Digital Transformation, Human Capital Upgrading, and Enterprise ESG Performance: Evidence from Chinese Listed Enterprises. Oeconomia Copernicana, 15(4), 1465–1508. DOI: https://doi.org/10.24136/oc.3058 .

Ramasamy, R. K., Muniandy, M., & Subramanian, P. (2025). A Predictive Framework for Sustainable Human Resource Management using tNPS-Driven Machine Learning Models. Sustainability (Switzerland), 17(13). DOI: https://doi.org/10.3390/su17135882 .

Zhang, Y., Chang, Y., Zhang, X., & Zhou, H. (2025). Artificial Intelligence and Enterprise Technological Innovation: Evidence From China. Managerial and Decision Economics, 46(7), 4056–4069. DOI: https://doi.org/10.1002/mde.70002 .

Safuan, S., & Syafira, A. (2024). Artificial Intelligence in Indonesian Ports: Opportunities and Challenges. Transactions on Maritime Science, 13(2). DOI: https://doi.org/10.7225/toms.v13.n02.w07 .

Billones, R. K. C., Lauresta, D. A. S., Dellosa, J. T., Bong, Y., Stergioulas, L. K., & Yunus, S. (2025). AI Ecosystem and Value Chain: A Multi-Layered Framework for Analyzing Supply, Value Creation, and Delivery Mechanisms. Technologies, 13(9). DOI: https://doi.org/10.3390/technologies13090421 .

Iuga, I. C., & Socol, A. (2024). Government Artificial Intelligence Readiness and Brain Drain: Influencing Factors and Spatial Effects in the European Union Member States. Journal of Business Economics and Management, 25(2), 268–296. DOI: https://doi.org/10.3846/jbem.2024.21136 .

Mohammadi, A. (2024). Industry-University Partnership Governance Base on New Technologies Emergence. Sustainable Social Development, 2. DOI: https://doi.org/10.54517/ssd3007 .

Wang, J., Wang, X., Sun, F., & Li, X. (2024). The Functional Mechanisms through Which Artificial Intelligence Influences the Innovation of Green Processes of Enterprises. Systems, 12(9). DOI: https://doi.org/10.3390/systems12090378 .

Nahavandi, S. (2019). Industry 5.0-a Human-Centric Solution. Sustainability (Switzerland), 11(16). DOI: https://doi.org/10.3390/su11164371 .

Johnson, M., Jain, R., Brennan-Tonetta, P., Swartz, E., Silver, D., Paolini, J., … Hill, C. (2021). Impact of Big Data and Artificial Intelligence on Industry: Developing a Workforce Roadmap for a Data Driven Economy. Global Journal of Flexible Systems Management, 22(3), 197–217. DOI: https://doi.org/10.1007/s40171-021-00272-y .

Soleas, E. K., Dittmer, D., Van Wylick, R., & Waddington, A. (2025). Demystifying Artificial Intelligence for Health Care Professionals: Continuing Professional Development as an Agent of Transformation Leading to Artificial Intelligence-Augmented Practice. Journal of Continuing Education in the Health Professions, 45(1), 52–55. DOI: https://doi.org/10.1097/CEH.0000000000000571 .

Mooradian N, Franks PC, Srivastav A (2025). The Impact of Artificial Intelligence on Data Privacy: a Risk Management Perspective. Records Management Journal, Vol. 35 No. 2 pp. 147–159. DOI: https://doi.org/10.1108/RMJ-06-2024-0013 .

Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M. E., … Staab, S. (2020). Bias in Data-Driven Artificial Intelligence Systems—An Introductory Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3). DOI: https://doi.org/10.1002/widm.1356 .

Xu, X., & Song, Y. (2023). Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China. Sustainability (Switzerland), 15. DOI: https://doi.org/10.3390/su151612437 .

Marocco, S., Talamo, A., & Quintiliani, F. (2024). From Service Design Thinking to the Third Generation of Activity Theory: a New Model for Designing AI-based Decision-Support Systems. Frontiers in Artificial Intelligence, 7. DOI: https://doi.org/10.3389/frai.2024.1303691 .

Li, Q., Abdul Ghani Azmi, I. binti, & Norman, A. A. binti. (2025). Enhancing Sustainable Innovation through Workplace Well-Being and Digital Capability: A Systematic Literature Review Toward Responsible and Cleaner Consumption. Cleaner and Responsible Consumption, 18. DOI: https://doi.org/10.1016/j.clrc.2025.100305 .

Download
Published
2025-12-31
Issue
Vol. 7, No. 4 (December 2025)
Section
Articles
How to Cite
Endra, S., Rosi, V., Widiasari, Z., Syafrita, W. K. E., Pranata, M. Y. E., & Syafwandi. (2025). Strategi Human Capital di Era Disrupsi AI: Systematic Literature Reviews tentang Reskilling, Upskilling, dan Pengelolaan Talent. Jurnal Informatika Ekonomi Bisnis, 7(4), 1038-1047. https://doi.org/10.37034/infeb.v7i4.1351
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexing and Abstractions:

Published:

       Creative Commons License
       This work is licensed under a Creative Commons Attribution 4.0 International Public License (CC BY 4.0).