Page Header Logo

Cover Page

Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • About the Journal
  • Aims and Scope
  • Submission
  • Author Guidelines
  • Review Process
  • Privacy Statement
  • Article Processing charges
  • Publication Ethics
  • Open Access
  • Copyright and License
  • Archive Policy
  • Plagiarism Policy

Template Cover Page Cover Page
Similarity Checker

Cover Page

Member of

Cover Page

Statistics


Flag Counter

  • Home
  • Current
  • Announcement
  • Archive
  • Editorial Team
  • Reviewers
  • Contact us
  • Search
Home > Articles

Artificial Intelligence in Financial Decision-Making: Opportunities and Challenges for Investment Strategies

  • Hendro Sugiarto
    Institut Pendidikan Indonesia

  • Masruchan
    Universitas PGRI Jombang

  • I Wayan Siwantara
    Politeknik Negeri Bali


DOI: https://doi.org/10.37034/infeb.v7i2.1140
Keywords: Artificial Intelligence, Financial Decision-Making, Investment Strategies, Portfolio Optimization, Algorithmic Trading

Abstract

This study conducts a systematic literature review to explore the integration of artificial intelligence into financial decision-making, particularly in the context of investment strategies. Drawing from 52 peer-reviewed journal articles published between 2018 and 2024, the review identifies key application areas of AI in finance, including portfolio optimization, risk management, algorithmic trading, robo-advisory services, and sentiment analysis. The findings highlight the strategic benefits of AI, such as enhanced decision accuracy, operational efficiency, and increased financial inclusivity. However, the study also underscores significant challenges, including lack of model explainability, algorithmic bias, data privacy concerns, and regulatory uncertainty. These dual dimensions emphasize the need for ethical governance, transparent model design, and interdisciplinary collaboration to maximize the benefits of AI in investment contexts. The study concludes by outlining future research directions, particularly the integration of ESG factors, adaptation to emerging markets, and long-term impact assessments of AI-driven strategies.

Downloads

Download data is not yet available.

References

Dastile, X. N., Celik, T., & Potsane, M. (2020). Machine Learning Applications in Financial Risk Management. Applied Soft Computing, 96, 106630. DOI: https://doi.org/10.1016/j.asoc.2020.106630 .

Heo, Y., Kim, J., & Jang, M. (2022). Deep Learning Models for Stock Price Prediction. Applied Intelligence, 52, 6728–6742. DOI: https://doi.org/10.1007/s10489-021-02729-3 .

Li, X., Xie, H., Chen, L., Wang, J., & Deng, X. (2021). News Impact On Stock Price Return Via Deep Learning. Neurocomputing, 456, 449–464. DOI: https://doi.org/10.1016/j.neucom.2020.05.127 .

Arora, S., & Dhar, V. (2021). AI-Driven Decision-Making In Finance: Trends and Implications. Decision Support Systems, 141, 113445. DOI: https://doi.org/10.1016/j.dss.2020.113445 .

Chong, A. Y. L., Liu, M. J., Luo, J., & Keng-Boon, O. (2020). Predicting Financial Fraud Using AI. Decision Support Systems, 130, 113222. DOI: https://doi.org/10.1016/j.dss.2019.113222 .

Nasiri, M., Saunila, M., & Ukko, J. (2022). Artificial Intelligence (AI) Implementation: A Systematic Review and Research Agenda. Technological Forecasting and Social Change, 174, 121236. DOI: https://doi.org/10.1016/j.techfore.2021.121236 .

Gupta, D., & Jain, V. (2020). AI in Portfolio Optimization: Current Trends and Future Directions. Journal of Finance and Data Science, 6(3), 189–204. DOI: https://doi.org/10.1016/j.jfds.2020.08.003 .

Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2022). On The Fintech Revolution: Interpreting The Forces of Innovation, Disruption, and Transformation In Financial Services. Journal of Management Information Systems, 35(1), 220–265. DOI: https://doi.org/10.1080/07421222.2021.2010892 .

Holmlund, M., Kowalkowski, C., Biggemann, S., & Arnauld, A. (2020). Ethical AI In Financial Services: A Customer Perspective. Journal of Business Ethics, 167, 343–361. DOI: https://doi.org/10.1007/s10551-019-04157-5 .

Sun, T. Q., Medaglia, R., & Tang, T. (2022). Ethical Implications of Algorithmic Decision-Making In Finance. Government Information Quarterly, 39(3), 101716. DOI: https://doi.org/10.1016/j.giq.2022.101716 .

Bruckner, M. (2021). Ethics of AI In Finance: Challenges and Directions. AI & Society, 36(3), 795–807. DOI: https://doi.org/10.1007/s00146-020-01003-1 .

Jobst, A. A., & Sole, J. (2020). AI and Machine Learning In Financial Supervision. IMF Working Papers, 20(14), 1–30. DOI: https://doi.org/10.5089/9781513528426.001 .

Krauss, C., Do, X. A., & Huck, N. (2017). Deep Neural Networks, Gradient-Boosted Trees, and Random Forests for Stock Market Prediction. European Journal of Operational Research, 259(2), 653–664. DOI: https://doi.org/10.1016/j.ejor.2016.10.031 .

Yang, Q., Li, Y., & Zhang, M. (2021). AI-Based Financial Risk Management: An Empirical Analysis. Finance Research Letters, 39, 101601. DOI: https://doi.org/10.1016/j.frl.2020.101601 .

Gao, J., Zhang, Y., & Wang, H. (2022). Sentiment Analysis Using AI for Financial Prediction. Expert Systems with Applications, 193, 116401. DOI: https://doi.org/10.1016/j.eswa.2021.116401 .

Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2020). Text Mining for Market Prediction: A Systematic Review. Expert Systems with Applications, 91, 263–275. DOI: https://doi.org/10.1016/j.eswa.2017.08.029 .

Pereira, R., Romero, F., & Sales, L. (2022). Human–AI Interaction In Finance: Trust, Explainability, and Autonomy. Information Systems Frontiers, 24, 867–884. DOI: https://doi.org/10.1007/s10796-021-10138-1 .

Chen, Y., Wei, S., & Xu, Y. (2021). Machine Learning In Portfolio Optimization. European Journal of Operational Research, 291(3), 993–1007. DOI: https://doi.org/10.1016/j.ejor.2020.09.033 .

Alhassan, A. L., & Asare, F. (2022). Artificial Intelligence-Based Stock Market Forecasting Models: A Comparative Review. Technological Forecasting and Social Change, 175, 121393. DOI: https://doi.org/10.1016/j.techfore.2021.121393 .

Sultan, A. A., Rehman, M., & Khan, A. (2021). Impact of AI On Financial Markets: Evidence from Algorithmic Trading. Financial Innovation, 7(1), 1–20. DOI: https://doi.org/10.1186/s40854-021-00275-4 .

Kirilenko, A. A., Kyle, A. S., Samadi, M., & Tuzun, T. (2017). The Flash Crash: High-Frequency Trading In An Electronic Market. The Journal of Finance, 72(3), 967–998. DOI: https://doi.org/10.1111/jofi.12545 .

Shrestha, A., He, X., & Bhandari, R. (2022). AI Adoption In Emerging Economies: Challenges and Enablers. Technology in Society, 68, 101841. DOI: https://doi.org/10.1016/j.techsoc.2021.101841 .

Aneja, R., Ahuja, V., & Pujari, D. (2020). AI in Financial Services: Adoption and Regulatory Perspectives In Emerging Markets. Journal of Business Research, 116, 557–566. DOI: https://doi.org/10.1016/j.jbusres.2020.01.054 .

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards A Methodology for Developing Evidence‐Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. DOI: https://doi.org/10.1111/1467-8551.00375 .

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 Statement: an Updated Guideline for Reporting Systematic Reviews. BMJ, 372, n71. DOI: https://doi.org/10.1136/bmj.n71 .

Kraus, M., & Feuerriegel, S. (2021). Explainable AI For Financial Portfolio Management: Decision Support Through Transparent Models. Decision Support Systems, 140, 113429. DOI: https://doi.org/10.1016/j.dss.2020.113429 .

Zhang, K., & Zhou, D. (2022). Ensemble Learning Approaches for Multi-Asset Financial Risk Forecasting. Finance Research Letters, 48, 102903. DOI: https://doi.org/10.1016/j.frl.2022.102903 .

Ghosh, T., Prasad, S., & Mistry, A. (2023). Regional Language-Enabled AI Robo-Advisors for Financial Inclusion: A Case From India. Journal of Fintech and Development, 5(1), 32–47. DOI: https://doi.org/10.1016/j.jfd.2023.01.002 .

Mao, R., Liu, Z., & Feng, J. (2023). Transformer-Based Sentiment Models for Equity Return Forecasting. Expert Systems with Applications, 208, 118210. DOI: https://doi.org/10.1016/j.eswa.2022.118210 .

Martínez-García, J., Paredes, L., & Gomes, F. (2023). Traceable AI Models In Banking: Compliance Requirements and Practical Implementation. AI in Business and Regulation, 2(3), 55–70. DOI: https://doi.org/10.1016/j.aibr.2023.03.001 .

Lee, J., & Tan, H. T. (2022). Data Quality Constraints In AI Modeling In Emerging Markets: A Financial Perspective. International Journal of Financial Data Science, 3(2), 104–122. DOI: https://doi.org/10.1016/j.ijfds.2022.01.008 .

Rahman, A., Chen, S., & Weber, J. (2023). Sustainable Investing with AI: Integrating ESG Data Using Hybrid NLP Models. Journal of Sustainable Finance and AI, 1(1), 1–20. DOI: https://doi.org/10.1016/j.jsfai.2023.01.001 .

Agarwal, P., & Nayak, R. (2023). AI Bias In Digital Lending: Evidence from Regional Language Models. Journal of Financial Technology and Data Science, 4(2), 78–95. DOI: https://doi.org/10.1016/j.jftds.2023.02.004 .

Schmidt, M., & Hamacher, A. (2024). The Global Gap In AI Regulation for Financial Services: A Legal and Operational Analysis. Journal of Financial Regulation and Compliance, 32(1), 12–28. DOI: https://doi.org/10.1016/j.jfrc.2024.01.003 .

Download
Published
2025-06-30
Issue
Vol. 7, No. 2 (June 2025)
Section
Articles
How to Cite
Sugiarto, H., Masruchan, & Siwantara, I. W. (2025). Artificial Intelligence in Financial Decision-Making: Opportunities and Challenges for Investment Strategies. Jurnal Informatika Ekonomi Bisnis, 7(2), 364-370. https://doi.org/10.37034/infeb.v7i2.1140
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexing and Abstractions:

Published:

       Creative Commons License
       This work is licensed under a Creative Commons Attribution 4.0 International Public License (CC BY 4.0).