Page Header Logo

Cover Page

Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • About the Journal
  • Aims and Scope
  • Submission
  • Author Guidelines
  • Review Process
  • Privacy Statement
  • Article Processing charges
  • Publication Ethics
  • Open Access
  • Copyright and License
  • Archive Policy
  • Plagiarism Policy

Template Cover Page Cover Page
Similarity Checker

Cover Page

Member of

Cover Page

Statistics


Flag Counter

  • Home
  • Current
  • Announcement
  • Archive
  • Editorial Team
  • Reviewers
  • Contact us
  • Search
Home > Articles

The Autoregressive Integrated Moving Average (ARIMA) Model for Predicting Jakarta Composite Index

  • Didik Gunawan
    STIE Bina Karya Tebing Tinggi

  • Weni Astika
    STIE Bina Karya Tebing Tinggi


DOI: https://doi.org/10.37034/infeb.v4i1.114
Keywords: Autoregressive Integrated Moving Average (ARIMA), Index, Jakarta Composite, Forecasting, Covid-19

Abstract

The purpose of this study is to test the ability of the Autoregressive Integrated Moving Average (ARIMA) model to predict the value of the Jakarta Composite Index (JKSE) which fluctuates greatly due to the Covid-19 pandemic. The population in this study is JKSE daily closing price data for the period January 2020 to April 2021, so the sample in this study is 324 time series data. The results showed that the best ARIMA model for predicting the value of the Jakarta Composite Index was ARIMA (3,1,9). ARIMA (3,1,9) can predict the JKSE value very well because the value of the forecasting results is not much different from the actual value. This is also evidenced by the results of the accuracy test using MAPE which has a result of 1,729 which means the accuracy of forecasting is 98,27%.

Downloads

Download data is not yet available.

References

Yamali FR, Putri RN. Dampak Covid-19 Terhadap Ekonomi Indonesia. Ekonomis: Journal of Economics and Business. 2020;4(2):384–8. http://ekonomis.unbari.ac.id/index.php/ojsekonomis/article/view/179
2. Prayogo C. Dampak Pandemi Covid-19 Terhadap Perekonomian Dunia [Internet]. 2020 [dikutip 4 April 2021]. Tersedia pada: https://www.wartaekonomi.co.id/read309848/dampak-pandemi-covid-19-terhadap-perekonomian-dunia-infografis
3. Corona, Ekonomi RI Kuartal I 2020 Anjlok ke Level 2,97 Persen [Internet]. 2020 [dikutip 3 Juni 2021]. Tersedia pada: https://www.cnnindonesia.com/ekonomi/20200505104344-532-500140/corona-ekonomi-ri-kuartal-i-2020-anjlok-ke-level-297-persen
4. Kementerian Komunikasi dan Informatika (Kominfo). Insentif Pemerintah Dukung Pasar Modal Bertahan di Tengah Pandemi [Internet]. 2020 [dikutip 19 Juli 2021]. Tersedia pada: https://www.kominfo.go.id/content/detail/31804/insentif-pemerintah-dukung-pasar-modal-bertahan-di-tengah-pandemi/0/berita
5. Grestandhi J, Susanto B, Mahatma T. Analisis Perbandingan Metode Peramalan Indeks Harga Saham Gabungan ( IHSG ) Dengan Metode Ols-arch Garch Dan Arima. Prosiding. 2011;(T-14). https://eprints.uny.ac.id/7315/
6. Yanuar AY. Dampak Variabel Internal dan Eksternal Terhadap Indeks Harga Saham Gabungan (IHSG) di Indonesia. Ilmu Ekonomi Fakultas Ekonomi dan Bisnis. 2013;1(2). https://jimfeb.ub.ac.id/index.php/jimfeb/article/view/632
7. Pratama AM. Ini Faktor Penyebab Naik Turunnya Harga Saham [Internet]. 2021 [dikutip 1 September 2021]. Tersedia pada: https://money.kompas.com/read/2021/05/20/080000326/ini-faktor-penyebab-naik-turunnya-harga-saham?page=all
8. Andiyasa IGA, Purbawangsa IBA, Rahyuda H. Pengaruh Beberapa Indeks Saham dan Indikator Ekonomi Global terhadap Kondisi Pasar Modal Indonesia. E-Jurnal Ekonomi dan Bisnis Universitas Udayana. 2014;3(4):182–99. https://ojs.unud.ac.id/index.php/EEB/article/view/7806
9. Susanti R, Adji AR. Analisis Peramalan Ihsg Dengan Time Series Modeling Arima. Jurnal Manajemen Kewirausahaan [Internet]. 2020;17(1):97. Tersedia pada: http://ejurnal.stieipwija.ac.id/index.php/jmk
10. Purnama J, Juliana A. Analisa Prediksi Indeks Harga Saham Gabungan Menggunakan Metode Arima. Cakrawala Management Business Journal. 2019;2(2):454–68. https://journal.feb.unipa.ac.id/index.php/cmbj/article/view/51
11. Pohan MJ, Ermiati C. Analisis Teknikal Dengan Metode Autoregressive Integrated Moving Average (ARIMA) Dan Generalized Autoregressive Conditional Heteroscedastic (GARCH) Dalam Memprediksi Harga Saham Perusahaan (Studi Pada Intiland Development Tbk). JURNAL PLANS. 2016;11(1):65–77 https://jurnal.unimed.ac.id/2012/index.php/plans/article/view/9601
12. Hendrawan B. Penerapan Model ARIMA Dalam Memprediksi IHSG. Jurnal Integrasi. 2012;4(2):205–11. https://jurnal.polibatam.ac.id/index.php/JI/article/view/231
13. Alahmari SA. Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies. Journal of Information Security. 2019;11(3):139–44. http://www.isecure-journal.com/article_90865.html
14. Zulbiadi. IHSG : Pengertian Indeks Harga Saham Gabungan Menurut Para Ahli dan Sejarah [Internet]. 2018 [dikutip 12 Juni 2021]. Tersedia pada: https://analis.co.id/ihsg-indeks-harga-saham-gabungan.html
15. Fitria I, Alam MSK, Subchan. Perbandingan Metode ARIMA dan Double Exponential Smoothing pada Peramalan Harga Saham LQ45 Tiga Perusahaan dengan Nilai Earning Per Share (EPS) Tertinggi. Limits: Journal of Mathematics and Its Applications. 2017;14(2):113–25. https://iptek.its.ac.id/index.php/limits/article/view/3060
DOWNLOAD
Published
2022-02-21
Issue
Vol. 4, No. 1 (March 2022)
Section
Articles
How to Cite
Gunawan, D., & Astika, W. (2022). The Autoregressive Integrated Moving Average (ARIMA) Model for Predicting Jakarta Composite Index. Jurnal Informatika Ekonomi Bisnis, 4(1), 1-6. https://doi.org/10.37034/infeb.v4i1.114
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexing and Abstractions:

Published:

       Creative Commons License
       This work is licensed under a Creative Commons Attribution 4.0 International Public License (CC BY 4.0).