Page Header Logo

Cover Page

Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • About the Journal
  • Aims and Scope
  • Submission
  • Author Guidelines
  • Review Process
  • Privacy Statement
  • Article Processing charges
  • Publication Ethics
  • Open Access
  • Copyright and License
  • Archive Policy
  • Plagiarism Policy

Template Cover Page Cover Page
Similarity Checker

Cover Page

Member of

Cover Page

Statistics


Flag Counter

  • Home
  • Current
  • Announcement
  • Archive
  • Editorial Team
  • Reviewers
  • Contact us
  • Search
Home > Articles

From Clicks to Conversions: Mastering Data-Driven Marketing for Maximum ROI

  • Bunga Aditi
    Universitas Harapan Medan

  • Miko Andi Wardana
    Akademi Penerbang Indonesia Banyuwangi

  • Erma Yuliani
    Universitas Terbuka


DOI: https://doi.org/10.37034/infeb.v7i2.1135
Keywords: Data-Driven Decision Making, Marketing Automation Using Artificial Intelligence, Customer Engagement, Return On Investment, Digital Marketing

Abstract

This study investigates the impact of data-driven decision making and marketing automation using artificial intelligence on return on investment, with customer engagement examined as a mediating variable. Employing a quantitative research design, data were collected through an online survey targeting professionals in digital marketing and e-commerce sectors. The analysis was conducted using Partial Least Squares Structural Equation Modeling, which validated both the measurement and structural models. The results reveal that data-driven decision making and marketing automation using artificial intelligence significantly influence customer engagement, which in turn has a strong and positive effect on return on investment. Furthermore, customer engagement mediates the relationship between both predictor variables and return on investment, suggesting that the financial benefits of digital strategies are maximized when they successfully foster active and meaningful customer interactions. These findings highlight the importance of integrating analytical tools and technological innovations with customer-centric engagement strategies to achieve sustainable marketing performance in digital environments.

Downloads

Download data is not yet available.

References

Lu, F. (2024). The Mediating Role of Cooperate Image Between Service Quality, Perceived Value and Customer Loyalty: A Study of Telecommunication Industry In Eastern Region of Thailand. Kasetsart Journal of Social Sciences, 45(1), 333–342. DOI: https://doi.org/10.34044/j.kjss.2024.45.1.34 .

Brodie, R. J., Hollebeek, L. D., Juric, B., & Ilic, A. (2011). Customer Engagement: Conceptual Domain, Fundamental Propositions, and Implications for Research. Journal of Service Research, 14(3), 252–271. DOI: https://doi.org/10.1177/1094670511411703 .

Calder, B. J., Malthouse, E. C., & Schaedel, U. (2009). An Experimental Study of The Relationship Between Online Engagement and Advertising Effectiveness. Journal of Interactive Marketing, 23(4), 321–331. DOI: https://doi.org/10.1016/j.intmar.2009.07.002 .

Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The Adoption of Artificial Intelligence In B2B Marketing: A Review and Research Agenda. Industrial Marketing Management, 98, 208–223. DOI: https://doi.org/10.1016/j.indmarman.2021.09.003 .

Davenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How Artificial Intelligence Will Change The Future of Marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. DOI: https://doi.org/10.1007/s11747-019-00696-0 .

Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data Consumer Analytics and The Transformation of Marketing. Journal of Business Research, 69(2), 897–904. DOI: https://doi.org/10.1016/j.jbusres.2015.07.001 .

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (3rd ed.). Sage Publications.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to Use and How to Report The Results of PLS-SEM. European Business Review, 31(1), 2–24. DOI: https://doi.org/10.1108/EBR-11-2018-0203 .

Hollebeek, L. D., Glynn, M. S., & Brodie, R. J. (2014). Consumer Brand Engagement In Social Media: Conceptualization, Scale Development and Validation. Journal of Interactive Marketing, 28(2), 149–165. DOI: https://doi.org/10.1016/j.intmar.2013.12.002 .

Järvinen, J., & Karjaluoto, H. (2015). The Use of Web Analytics for Digital Marketing Performance Measurement. Industrial Marketing Management, 50, 117–127. DOI: https://doi.org/10.1016/j.indmarman.2015.04.009 .

Kannan, P. K., & Li, H. (2017). Digital Marketing: A Framework, Review and Research Agenda. International Journal of Research in Marketing, 34(1), 22–45. DOI: https://doi.org/10.1016/j.ijresmar.2016.11.006 .

Kumar, V., Aksoy, L., Donkers, B., Venkatesan, R., Wiesel, T., & Tillmanns, S. (2019). Undervalued or Overvalued Customers: Capturing Total Customer Engagement Value. Journal of Service Research, 13(3), 297–310. DOI: https://doi.org/10.1177/1094670510375602 .

Kumar, V., Dixit, A., Javalgi, R. G., Dass, M., & Kannan, P. K. (2019). Marketing Analytics: The Evolution of Marketing Research In The Big Data Era. Journal of Business Research, 100, 366–380. DOI: https://doi.org/10.1016/j.jbusres.2019.01.037 .

Kumar, V., Ramachandran, D., & Kumar, B. (2021). Influencing The Influencers: The Role of Social Media Influencers In Digital Marketing. Journal of Marketing, 85(2), 1–22. DOI: https://doi.org/10.1177/0022242921997013 .

Leeflang, P. S., Verhoef, P. C., Dahlström, P., & Freundt, T. (2014). Challenges and Solutions For Marketing In A Digital Era. European Management Journal, 32(1), 1–12. DOI: https://doi.org/10.1016/j.emj.2013.12.001 .

Lemon, K. N., & Verhoef, P. C. (2016). Understanding Customer Experience Throughout The Customer Journey. Journal of Marketing, 80(6), 69–96. DOI: https://doi.org/10.1509/jm.15.0420 .

Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of Method Bias In Social Science Research and Recommendations on How To Control It. Annual Review of Psychology, 63, 539–569. DOI: https://doi.org/10.1146/annurev-psych-120710-100452 .

Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Partial Least Squares Structural Equation Modeling. In H. Latan & R. Noonan (Eds.), Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications (pp. 1–40). Springer. DOI: https://doi.org/10.1007/978-3-319-64069-3_1 .

Stephen, A. T. (2016). The Role of Digital and Social Media Marketing In Consumer Behavior. Current Opinion in Psychology, 10, 17–21. DOI: https://doi.org/10.1016/j.copsyc.2015.10.016 .

Stone, M., & Woodcock, N. (2014). Interactive, Direct and Digital Marketing: A Future That Depends on Better Use of Business Intelligence. Journal of Research in Interactive Marketing, 8(1), 4–17. DOI: https://doi.org/10.1108/JRIM-12-2013-0075 .

Vivek, S. D., Beatty, S. E., & Morgan, R. M. (2012). Customer Engagement: Exploring Customer Relationships Beyond Purchase. Journal of Marketing Theory and Practice, 20(2), 122–146. DOI: https://doi.org/10.2753/MTP1069-6679200201 .

Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of Artificial Intelligence (AI) On Firm Performance: The Business Value of AI-Based Transformation Projects. Business Process Management Journal, 26(7), 1965–1993. DOI: https://doi.org/10.1108/BPMJ-10-2019-0411 .

Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97–121. DOI: https://doi.org/10.1509/jm.15.0413 .

Download
Published
2025-06-30
Issue
Vol. 7, No. 2 (June 2025)
Section
Articles
How to Cite
Aditi, B., Wardana, M. A., & Yuliani, E. (2025). From Clicks to Conversions: Mastering Data-Driven Marketing for Maximum ROI. Jurnal Informatika Ekonomi Bisnis, 7(2), 334-338. https://doi.org/10.37034/infeb.v7i2.1135
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexing and Abstractions:

Published:

       Creative Commons License
       This work is licensed under a Creative Commons Attribution 4.0 International Public License (CC BY 4.0).