Page Header Logo

Cover Page

Journal Content
Browse
  • By Issue
  • By Author
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
Atom logo
RSS2 logo
RSS1 logo
  • About the Journal
  • Aims and Scope
  • Submission
  • Author Guidelines
  • Review Process
  • Privacy Statement
  • Article Processing charges
  • Publication Ethics
  • Open Access
  • Copyright and License
  • Archive Policy
  • Plagiarism Policy

Template Cover Page Cover Page
Similarity Checker

Cover Page

Member of

Cover Page

Statistics


Flag Counter

  • Home
  • Current
  • Announcement
  • Archive
  • Editorial Team
  • Reviewers
  • Contact us
  • Search
Home > Articles

Behavioral Finance in the Digital Era: Understanding Investor Psychology in a High-Volatility Market

  • Andre Prasetya Willim
    Universitas Widya Dharma Pontianak


DOI: https://doi.org/10.37034/infeb.v7i2.1134
Keywords: Behavioral Finance, Digital Information Overload, Market Sentiment, Investor Confidence, Investment Decision-Making

Abstract

This study investigates the impact of digital information overload and market sentiment on investment decision-making in the digital era, with investor confidence examined as a mediating variable. Using a quantitative research design and data collected from active retail investors through an online survey, the analysis was conducted using Partial Least Squares Structural Equation Modeling (PLS-SEM) with SmartPLS. The results reveal that digital information overload negatively influences both investor confidence and investment decisions, while market sentiment exerts a positive effect on both. Furthermore, investor confidence significantly mediates the relationship between the independent variables and investment decision-making, highlighting its central psychological role in the digital investment environment. These findings enrich the behavioral finance literature by incorporating digital-era constructs and provide actionable insights for financial platforms, educators, and regulators to foster more confident and rational investment behavior in volatile markets.

Downloads

Download data is not yet available.

References

Barberis, N., Mukherjee, A., & Wang, B. (2018). Prospect theory and stock market anomalies. American Economic Review, 108(6), 1265–1301. DOI: https://doi.org/10.1257/aer.20160992

Chaudhuri, A. (2016). Misbehaving: The Making of Behavioral Economics by Richard H. Thaler, W.W. Norton and Company, New York, 2015, xvi + 415 pp., Hardcover, USD 27.95, ISBN: 978-0-393-08094-0. Journal of Behavioral and Experimental Economics, 60, 64–65. DOI: https://doi.org/10.1016/j.socec.2015.11.002 .

Lo, A. W. (2019). Adaptive markets: Financial evolution at the speed of thought. Princeton University Press. DOI: https://dx.doi.org/10.1057/s11369-018-0101-5 .

Kamuangu, P. (2024). A Review on Cybersecurity in Fintech: Threats, Solutions, and Future Trends. Journal of Economics, Finance and Accounting Studies, 6(1), 47–53. DOI: https://doi.org/10.32996/jefas.2024.6.1.5 .

Nguyen, T. H., Pham, H., & Vo, X. V. (2021). Online Trading and Behavioral Biases: Evidence from Vietnam. Emerging Markets Review, 47, 100763. DOI: https://doi.org/10.1016/j.ememar.2021.100763 .

Lin, K., Zhou, Y., & Wang, S. (2020). Investor Confidence and Market Reaction: Evidence from China. Pacific-Basin Finance Journal, 63, 101426. DOI: https://doi.org/10.1016/j.pacfin.2020.101426 .

Eppler, M. J., & Mengis, J. (2019). The Concept of Information Overload: A Review of Literature. Information Society, 36(2), 102–119. DOI: https://doi.org/10.1080/01972243.2019.1568534

Wang, J., Liu, S., & Sun, Y. (2021). Information Overload In Digital Finance: A Bibliometric Analysis. Journal of Business Research, 134, 420–430. DOI: https://doi.org/10.1016/j.jbusres.2021.05.044 .

Almeida, R., Fernandes, M., & Ribeiro, M. (2020). Panic Selling and Behavioral Finance. Review of Financial Studies, 33(7), 2950–2975. DOI: https://doi.org/10.1093/rfs/hhaa007 .

Ma, Y., Chen, Q., & Deng, L. (2022). Behavioral Anomalies and Stock Returns Under Information Overload. Journal of Behavioral and Experimental Finance, 35, 100738. DOI: https://doi.org/10.1016/j.jbef.2022.100738 .

Yu, M., Li, H., & Zhou, Y. (2020). Market Sentiment and Investor Behavior: A Structural Equation Modeling Approach. Journal of Financial Markets, 48, 100537. DOI: https://doi.org/10.1016/j.finmar.2019.100537 .

Han, Y., & Li, Y. (2021). Social Media Sentiment and Market Behavior: A Behavioral Perspective. Journal of Behavioral Finance, 22(3), 221–236. DOI: https://doi.org/10.1080/15427560.2020.1787178 .

Zhou, Y., Zhang, C., & Huang, Y. (2023). Investor Sentiment Diffusion and Asset Price Volatility In Digital Platforms. International Journal of Finance & Economics, 28(1), 10–26. DOI: https://doi.org/10.1002/ijfe.2705 .

Chen, H., Liu, H., & Yang, Y. (2022). Investor Sentiment and Digital Platforms: A Text-Mining Approach. Journal of Financial Data Science, 4(1), 45–61. DOI: https://doi.org/10.3905/jfds.2022.1.075 .

Gao, H., & Zhang, L. (2020). Overconfidence and Trading Volume: Evidence from Market Data. Review of Quantitative Finance and Accounting, 54(3), 871–896. DOI: https://doi.org/10.1007/s11156-019-00857-y .

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision Under Risk. Econometrica, 47(2), 263–291. DOI: https://doi.org/10.2307/1914185 .

Mousavi, S., Bierman, H., & Schwarcz, D. (2021). The Behavioral Foundations of Modern Finance. Annual Review of Financial Economics, 13, 423–446. DOI: https://doi.org/10.1146/annurev-financial-091420-103438 .

Baker, M., Wurgler, J., & Yuan, Y. (2019). Global, Local, and Contagious Investor Sentiment. Journal of Financial Economics, 104(2), 272–287. DOI: https://doi.org/10.1016/j.jfineco.2011.11.002 .

Li, J., & Peng, Y. (2023). Fintech Platforms and Investor Attention: The Role of Digital Communication. Journal of Financial Innovation, 9(1), 38–56. DOI: https://doi.org/10.1007/s11408-023-00376-w .

Akhtar, S., Riaz, R., & Hafeez, S. (2020). The Impact of Investor Confidence On Investment Decision-Making. Journal of Behavioral and Experimental Finance, 27, 100375. DOI: https://doi.org/10.1016/j.jbef.2020.100375 .

Alaoui, L., & Penta, A. (2022). Confidence In Decision-Making: A Behavioral Model. American Economic Review, 112(1), 256–292. DOI: https://doi.org/10.1257/aer.20200540 .

Palan, S., Stöckl, T., & Zeisberger, S. (2021). Risk Perception and Digital Trading: Experimental Insights. Journal of Economic Behavior & Organization, 190, 1–17. DOI: https://doi.org/10.1016/j.jebo.2021.07.013 .

Bhatia, S., & Tuli, R. (2023). Role of Behavioral Biases In Investor Decision-Making: Evidence from Emerging Markets. Finance Research Letters, 49, 103025. DOI: https://doi.org/10.1016/j.frl.2022.103025 .

Jiao, Y., & Chen, M. (2020). Retail Investors and Digital Brokerage: Impacts On Market Stability. International Review of Financial Analysis, 72, 101563. DOI: https://doi.org/10.1016/j.irfa.2020.101563 .

Chuang, P., & Lin, R. (2020). Digital Disruption and Investor Behavior: A Moderated Mediation Analysis. Technological Forecasting and Social Change, 161, 120302. DOI: https://doi.org/10.1016/j.techfore.2020.120302 .

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A Primer On Partial Least Squares Structural Equation Modeling (PLS-SEM) (3rd ed.). SAGE Publications.

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review. Journal of Applied Psychology, 88(5), 879–903. DOI: https://doi.org/10.1037/0021-9010.88.5.879 .

Ringle, C. M., Wende, S., & Becker, J.-M. (2020). SmartPLS 4.0 User Manual. SmartPLS GmbH.

Sarstedt, M., Ringle, C. M., & Hair, J. F. (2019). Treating Unobserved Heterogeneity in PLS-SEM. Journal of Business Research, 112, 287–297. DOI: https://doi.org/10.1016/j.jbusres.2019.04.027 .

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to Use and How To Report The Results of PLS-SEM. European Business Review, 31(1), 2–24. DOI: https://doi.org/10.1108/EBR-11-2018-0203 .

Evans, J. S. B. T. (2008). Dual-Processing Accounts Of Reasoning, Judgment, and Social Cognition. Annual Review of Psychology, 59, 255–278. DOI: https://doi.org/10.1146/annurev.psych.59.103006.093629 .

Forgas, J. P. (1995). Mood and Judgment: The Affect Infusion Model (AIM). Psychological Bulletin, 117(1), 39–66. DOI: https://doi.org/10.1037/0033-2909.117.1.39 .

Download
Published
2025-06-30
Issue
Vol. 7, No. 2 (June 2025)
Section
Articles
How to Cite
Willim, A. P. (2025). Behavioral Finance in the Digital Era: Understanding Investor Psychology in a High-Volatility Market. Jurnal Informatika Ekonomi Bisnis, 7(2), 323-327. https://doi.org/10.37034/infeb.v7i2.1134
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.



Indexing and Abstractions:

Published:

       Creative Commons License
       This work is licensed under a Creative Commons Attribution 4.0 International Public License (CC BY 4.0).